lcode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  27. #define MAXREGS 255
  28. #define hasjumps(e) ((e)->t != (e)->f)
  29. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  30. /* semantic error */
  31. l_noret luaK_semerror (LexState *ls, const char *msg) {
  32. ls->t.token = 0; /* remove "near <token>" from final message */
  33. luaX_syntaxerror(ls, msg);
  34. }
  35. /*
  36. ** If expression is a numeric constant, fills 'v' with its value
  37. ** and returns 1. Otherwise, returns 0.
  38. */
  39. static int tonumeral (const expdesc *e, TValue *v) {
  40. if (hasjumps(e))
  41. return 0; /* not a numeral */
  42. switch (e->k) {
  43. case VKINT:
  44. if (v) setivalue(v, e->u.ival);
  45. return 1;
  46. case VKFLT:
  47. if (v) setfltvalue(v, e->u.nval);
  48. return 1;
  49. default: return 0;
  50. }
  51. }
  52. /*
  53. ** Get the constant value from a constant expression
  54. */
  55. static TValue *const2val (FuncState *fs, const expdesc *e) {
  56. lua_assert(e->k == VCONST);
  57. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  58. }
  59. /*
  60. ** If expression is a constant, fills 'v' with its value
  61. ** and returns 1. Otherwise, returns 0.
  62. */
  63. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  64. if (hasjumps(e))
  65. return 0; /* not a constant */
  66. switch (e->k) {
  67. case VFALSE:
  68. setbfvalue(v);
  69. return 1;
  70. case VTRUE:
  71. setbtvalue(v);
  72. return 1;
  73. case VNIL:
  74. setnilvalue(v);
  75. return 1;
  76. case VKSTR: {
  77. setsvalue(fs->ls->L, v, e->u.strval);
  78. return 1;
  79. }
  80. case VCONST: {
  81. setobj(fs->ls->L, v, const2val(fs, e));
  82. return 1;
  83. }
  84. default: return tonumeral(e, v);
  85. }
  86. }
  87. /*
  88. ** Return the previous instruction of the current code. If there
  89. ** may be a jump target between the current instruction and the
  90. ** previous one, return an invalid instruction (to avoid wrong
  91. ** optimizations).
  92. */
  93. static Instruction *previousinstruction (FuncState *fs) {
  94. static const Instruction invalidinstruction = ~(Instruction)0;
  95. if (fs->pc > fs->lasttarget)
  96. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  97. else
  98. return cast(Instruction*, &invalidinstruction);
  99. }
  100. /*
  101. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  102. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  103. ** range of previous instruction instead of emitting a new one. (For
  104. ** instance, 'local a; local b' will generate a single opcode.)
  105. */
  106. void luaK_nil (FuncState *fs, int from, int n) {
  107. int l = from + n - 1; /* last register to set nil */
  108. Instruction *previous = previousinstruction(fs);
  109. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  110. int pfrom = GETARG_A(*previous); /* get previous range */
  111. int pl = pfrom + GETARG_B(*previous);
  112. if ((pfrom <= from && from <= pl + 1) ||
  113. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  114. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  115. if (pl > l) l = pl; /* l = max(l, pl) */
  116. SETARG_A(*previous, from);
  117. SETARG_B(*previous, l - from);
  118. return;
  119. } /* else go through */
  120. }
  121. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  122. }
  123. /*
  124. ** Gets the destination address of a jump instruction. Used to traverse
  125. ** a list of jumps.
  126. */
  127. static int getjump (FuncState *fs, int pc) {
  128. int offset = GETARG_sJ(fs->f->code[pc]);
  129. if (offset == NO_JUMP) /* point to itself represents end of list */
  130. return NO_JUMP; /* end of list */
  131. else
  132. return (pc+1)+offset; /* turn offset into absolute position */
  133. }
  134. /*
  135. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  136. ** (Jump addresses are relative in Lua)
  137. */
  138. static void fixjump (FuncState *fs, int pc, int dest) {
  139. Instruction *jmp = &fs->f->code[pc];
  140. int offset = dest - (pc + 1);
  141. lua_assert(dest != NO_JUMP);
  142. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  143. luaX_syntaxerror(fs->ls, "control structure too long");
  144. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  145. SETARG_sJ(*jmp, offset);
  146. }
  147. /*
  148. ** Concatenate jump-list 'l2' into jump-list 'l1'
  149. */
  150. void luaK_concat (FuncState *fs, int *l1, int l2) {
  151. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  152. else if (*l1 == NO_JUMP) /* no original list? */
  153. *l1 = l2; /* 'l1' points to 'l2' */
  154. else {
  155. int list = *l1;
  156. int next;
  157. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  158. list = next;
  159. fixjump(fs, list, l2); /* last element links to 'l2' */
  160. }
  161. }
  162. /*
  163. ** Create a jump instruction and return its position, so its destination
  164. ** can be fixed later (with 'fixjump').
  165. */
  166. int luaK_jump (FuncState *fs) {
  167. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  168. }
  169. /*
  170. ** Code a 'return' instruction
  171. */
  172. void luaK_ret (FuncState *fs, int first, int nret) {
  173. OpCode op;
  174. switch (nret) {
  175. case 0: op = OP_RETURN0; break;
  176. case 1: op = OP_RETURN1; break;
  177. default: op = OP_RETURN; break;
  178. }
  179. luaK_codeABC(fs, op, first, nret + 1, 0);
  180. }
  181. /*
  182. ** Code a "conditional jump", that is, a test or comparison opcode
  183. ** followed by a jump. Return jump position.
  184. */
  185. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  186. luaK_codeABCk(fs, op, A, B, C, k);
  187. return luaK_jump(fs);
  188. }
  189. /*
  190. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  191. ** optimizations with consecutive instructions not in the same basic block).
  192. */
  193. int luaK_getlabel (FuncState *fs) {
  194. fs->lasttarget = fs->pc;
  195. return fs->pc;
  196. }
  197. /*
  198. ** Returns the position of the instruction "controlling" a given
  199. ** jump (that is, its condition), or the jump itself if it is
  200. ** unconditional.
  201. */
  202. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  203. Instruction *pi = &fs->f->code[pc];
  204. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  205. return pi-1;
  206. else
  207. return pi;
  208. }
  209. /*
  210. ** Patch destination register for a TESTSET instruction.
  211. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  212. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  213. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  214. ** no register value)
  215. */
  216. static int patchtestreg (FuncState *fs, int node, int reg) {
  217. Instruction *i = getjumpcontrol(fs, node);
  218. if (GET_OPCODE(*i) != OP_TESTSET)
  219. return 0; /* cannot patch other instructions */
  220. if (reg != NO_REG && reg != GETARG_B(*i))
  221. SETARG_A(*i, reg);
  222. else {
  223. /* no register to put value or register already has the value;
  224. change instruction to simple test */
  225. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  226. }
  227. return 1;
  228. }
  229. /*
  230. ** Traverse a list of tests ensuring no one produces a value
  231. */
  232. static void removevalues (FuncState *fs, int list) {
  233. for (; list != NO_JUMP; list = getjump(fs, list))
  234. patchtestreg(fs, list, NO_REG);
  235. }
  236. /*
  237. ** Traverse a list of tests, patching their destination address and
  238. ** registers: tests producing values jump to 'vtarget' (and put their
  239. ** values in 'reg'), other tests jump to 'dtarget'.
  240. */
  241. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  242. int dtarget) {
  243. while (list != NO_JUMP) {
  244. int next = getjump(fs, list);
  245. if (patchtestreg(fs, list, reg))
  246. fixjump(fs, list, vtarget);
  247. else
  248. fixjump(fs, list, dtarget); /* jump to default target */
  249. list = next;
  250. }
  251. }
  252. /*
  253. ** Path all jumps in 'list' to jump to 'target'.
  254. ** (The assert means that we cannot fix a jump to a forward address
  255. ** because we only know addresses once code is generated.)
  256. */
  257. void luaK_patchlist (FuncState *fs, int list, int target) {
  258. lua_assert(target <= fs->pc);
  259. patchlistaux(fs, list, target, NO_REG, target);
  260. }
  261. void luaK_patchtohere (FuncState *fs, int list) {
  262. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  263. luaK_patchlist(fs, list, hr);
  264. }
  265. /* limit for difference between lines in relative line info. */
  266. #define LIMLINEDIFF 0x80
  267. /*
  268. ** Save line info for a new instruction. If difference from last line
  269. ** does not fit in a byte, of after that many instructions, save a new
  270. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  271. ** in 'lineinfo' signals the existence of this absolute information.)
  272. ** Otherwise, store the difference from last line in 'lineinfo'.
  273. */
  274. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  275. int linedif = line - fs->previousline;
  276. int pc = fs->pc - 1; /* last instruction coded */
  277. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  278. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  279. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  280. f->abslineinfo[fs->nabslineinfo].pc = pc;
  281. f->abslineinfo[fs->nabslineinfo++].line = line;
  282. linedif = ABSLINEINFO; /* signal that there is absolute information */
  283. fs->iwthabs = 1; /* restart counter */
  284. }
  285. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  286. MAX_INT, "opcodes");
  287. f->lineinfo[pc] = linedif;
  288. fs->previousline = line; /* last line saved */
  289. }
  290. /*
  291. ** Remove line information from the last instruction.
  292. ** If line information for that instruction is absolute, set 'iwthabs'
  293. ** above its max to force the new (replacing) instruction to have
  294. ** absolute line info, too.
  295. */
  296. static void removelastlineinfo (FuncState *fs) {
  297. Proto *f = fs->f;
  298. int pc = fs->pc - 1; /* last instruction coded */
  299. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  300. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  301. fs->iwthabs--; /* undo previous increment */
  302. }
  303. else { /* absolute line information */
  304. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  305. fs->nabslineinfo--; /* remove it */
  306. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  307. }
  308. }
  309. /*
  310. ** Remove the last instruction created, correcting line information
  311. ** accordingly.
  312. */
  313. static void removelastinstruction (FuncState *fs) {
  314. removelastlineinfo(fs);
  315. fs->pc--;
  316. }
  317. /*
  318. ** Emit instruction 'i', checking for array sizes and saving also its
  319. ** line information. Return 'i' position.
  320. */
  321. int luaK_code (FuncState *fs, Instruction i) {
  322. Proto *f = fs->f;
  323. /* put new instruction in code array */
  324. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  325. MAX_INT, "opcodes");
  326. f->code[fs->pc++] = i;
  327. savelineinfo(fs, f, fs->ls->lastline);
  328. return fs->pc - 1; /* index of new instruction */
  329. }
  330. /*
  331. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  332. ** of parameters versus opcode.)
  333. */
  334. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  335. lua_assert(getOpMode(o) == iABC);
  336. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  337. c <= MAXARG_C && (k & ~1) == 0);
  338. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  339. }
  340. /*
  341. ** Format and emit an 'iABx' instruction.
  342. */
  343. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  344. lua_assert(getOpMode(o) == iABx);
  345. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  346. return luaK_code(fs, CREATE_ABx(o, a, bc));
  347. }
  348. /*
  349. ** Format and emit an 'iAsBx' instruction.
  350. */
  351. int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  352. unsigned int b = bc + OFFSET_sBx;
  353. lua_assert(getOpMode(o) == iAsBx);
  354. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  355. return luaK_code(fs, CREATE_ABx(o, a, b));
  356. }
  357. /*
  358. ** Format and emit an 'isJ' instruction.
  359. */
  360. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  361. unsigned int j = sj + OFFSET_sJ;
  362. lua_assert(getOpMode(o) == isJ);
  363. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  364. return luaK_code(fs, CREATE_sJ(o, j, k));
  365. }
  366. /*
  367. ** Emit an "extra argument" instruction (format 'iAx')
  368. */
  369. static int codeextraarg (FuncState *fs, int a) {
  370. lua_assert(a <= MAXARG_Ax);
  371. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  372. }
  373. /*
  374. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  375. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  376. ** instruction with "extra argument".
  377. */
  378. static int luaK_codek (FuncState *fs, int reg, int k) {
  379. if (k <= MAXARG_Bx)
  380. return luaK_codeABx(fs, OP_LOADK, reg, k);
  381. else {
  382. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  383. codeextraarg(fs, k);
  384. return p;
  385. }
  386. }
  387. /*
  388. ** Check register-stack level, keeping track of its maximum size
  389. ** in field 'maxstacksize'
  390. */
  391. void luaK_checkstack (FuncState *fs, int n) {
  392. int newstack = fs->freereg + n;
  393. if (newstack > fs->f->maxstacksize) {
  394. if (newstack >= MAXREGS)
  395. luaX_syntaxerror(fs->ls,
  396. "function or expression needs too many registers");
  397. fs->f->maxstacksize = cast_byte(newstack);
  398. }
  399. }
  400. /*
  401. ** Reserve 'n' registers in register stack
  402. */
  403. void luaK_reserveregs (FuncState *fs, int n) {
  404. luaK_checkstack(fs, n);
  405. fs->freereg += n;
  406. }
  407. /*
  408. ** Free register 'reg', if it is neither a constant index nor
  409. ** a local variable.
  410. )
  411. */
  412. static void freereg (FuncState *fs, int reg) {
  413. if (reg >= luaY_nvarstack(fs)) {
  414. fs->freereg--;
  415. lua_assert(reg == fs->freereg);
  416. }
  417. }
  418. /*
  419. ** Free two registers in proper order
  420. */
  421. static void freeregs (FuncState *fs, int r1, int r2) {
  422. if (r1 > r2) {
  423. freereg(fs, r1);
  424. freereg(fs, r2);
  425. }
  426. else {
  427. freereg(fs, r2);
  428. freereg(fs, r1);
  429. }
  430. }
  431. /*
  432. ** Free register used by expression 'e' (if any)
  433. */
  434. static void freeexp (FuncState *fs, expdesc *e) {
  435. if (e->k == VNONRELOC)
  436. freereg(fs, e->u.info);
  437. }
  438. /*
  439. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  440. ** order.
  441. */
  442. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  443. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  444. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  445. freeregs(fs, r1, r2);
  446. }
  447. /*
  448. ** Add constant 'v' to prototype's list of constants (field 'k').
  449. ** Use scanner's table to cache position of constants in constant list
  450. ** and try to reuse constants. Because some values should not be used
  451. ** as keys (nil cannot be a key, integer keys can collapse with float
  452. ** keys), the caller must provide a useful 'key' for indexing the cache.
  453. ** Note that all functions share the same table, so entering or exiting
  454. ** a function can make some indices wrong.
  455. */
  456. static int addk (FuncState *fs, TValue *key, TValue *v) {
  457. TValue val;
  458. lua_State *L = fs->ls->L;
  459. Proto *f = fs->f;
  460. const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
  461. int k, oldsize;
  462. if (ttisinteger(idx)) { /* is there an index there? */
  463. k = cast_int(ivalue(idx));
  464. /* correct value? (warning: must distinguish floats from integers!) */
  465. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  466. luaV_rawequalobj(&f->k[k], v))
  467. return k; /* reuse index */
  468. }
  469. /* constant not found; create a new entry */
  470. oldsize = f->sizek;
  471. k = fs->nk;
  472. /* numerical value does not need GC barrier;
  473. table has no metatable, so it does not need to invalidate cache */
  474. setivalue(&val, k);
  475. luaH_finishset(L, fs->ls->h, key, idx, &val);
  476. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  477. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  478. setobj(L, &f->k[k], v);
  479. fs->nk++;
  480. luaC_barrier(L, f, v);
  481. return k;
  482. }
  483. /*
  484. ** Add a string to list of constants and return its index.
  485. */
  486. static int stringK (FuncState *fs, TString *s) {
  487. TValue o;
  488. setsvalue(fs->ls->L, &o, s);
  489. return addk(fs, &o, &o); /* use string itself as key */
  490. }
  491. /*
  492. ** Add an integer to list of constants and return its index.
  493. */
  494. static int luaK_intK (FuncState *fs, lua_Integer n) {
  495. TValue o;
  496. setivalue(&o, n);
  497. return addk(fs, &o, &o); /* use integer itself as key */
  498. }
  499. /*
  500. ** Add a float to list of constants and return its index. Floats
  501. ** with integral values need a different key, to avoid collision
  502. ** with actual integers. To that, we add to the number its smaller
  503. ** power-of-two fraction that is still significant in its scale.
  504. ** For doubles, that would be 1/2^52.
  505. ** (This method is not bulletproof: there may be another float
  506. ** with that value, and for floats larger than 2^53 the result is
  507. ** still an integer. At worst, this only wastes an entry with
  508. ** a duplicate.)
  509. */
  510. static int luaK_numberK (FuncState *fs, lua_Number r) {
  511. TValue o;
  512. lua_Integer ik;
  513. setfltvalue(&o, r);
  514. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  515. return addk(fs, &o, &o); /* use number itself as key */
  516. else { /* must build an alternative key */
  517. const int nbm = l_floatatt(MANT_DIG);
  518. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  519. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  520. TValue kv;
  521. setfltvalue(&kv, k);
  522. /* result is not an integral value, unless value is too large */
  523. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  524. l_mathop(fabs)(r) >= l_mathop(1e6));
  525. return addk(fs, &kv, &o);
  526. }
  527. }
  528. /*
  529. ** Add a false to list of constants and return its index.
  530. */
  531. static int boolF (FuncState *fs) {
  532. TValue o;
  533. setbfvalue(&o);
  534. return addk(fs, &o, &o); /* use boolean itself as key */
  535. }
  536. /*
  537. ** Add a true to list of constants and return its index.
  538. */
  539. static int boolT (FuncState *fs) {
  540. TValue o;
  541. setbtvalue(&o);
  542. return addk(fs, &o, &o); /* use boolean itself as key */
  543. }
  544. /*
  545. ** Add nil to list of constants and return its index.
  546. */
  547. static int nilK (FuncState *fs) {
  548. TValue k, v;
  549. setnilvalue(&v);
  550. /* cannot use nil as key; instead use table itself to represent nil */
  551. sethvalue(fs->ls->L, &k, fs->ls->h);
  552. return addk(fs, &k, &v);
  553. }
  554. /*
  555. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  556. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  557. ** overflows in the hidden addition inside 'int2sC'.
  558. */
  559. static int fitsC (lua_Integer i) {
  560. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  561. }
  562. /*
  563. ** Check whether 'i' can be stored in an 'sBx' operand.
  564. */
  565. static int fitsBx (lua_Integer i) {
  566. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  567. }
  568. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  569. if (fitsBx(i))
  570. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  571. else
  572. luaK_codek(fs, reg, luaK_intK(fs, i));
  573. }
  574. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  575. lua_Integer fi;
  576. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  577. luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  578. else
  579. luaK_codek(fs, reg, luaK_numberK(fs, f));
  580. }
  581. /*
  582. ** Convert a constant in 'v' into an expression description 'e'
  583. */
  584. static void const2exp (TValue *v, expdesc *e) {
  585. switch (ttypetag(v)) {
  586. case LUA_VNUMINT:
  587. e->k = VKINT; e->u.ival = ivalue(v);
  588. break;
  589. case LUA_VNUMFLT:
  590. e->k = VKFLT; e->u.nval = fltvalue(v);
  591. break;
  592. case LUA_VFALSE:
  593. e->k = VFALSE;
  594. break;
  595. case LUA_VTRUE:
  596. e->k = VTRUE;
  597. break;
  598. case LUA_VNIL:
  599. e->k = VNIL;
  600. break;
  601. case LUA_VSHRSTR: case LUA_VLNGSTR:
  602. e->k = VKSTR; e->u.strval = tsvalue(v);
  603. break;
  604. default: lua_assert(0);
  605. }
  606. }
  607. /*
  608. ** Fix an expression to return the number of results 'nresults'.
  609. ** 'e' must be a multi-ret expression (function call or vararg).
  610. */
  611. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  612. Instruction *pc = &getinstruction(fs, e);
  613. if (e->k == VCALL) /* expression is an open function call? */
  614. SETARG_C(*pc, nresults + 1);
  615. else {
  616. lua_assert(e->k == VVARARG);
  617. SETARG_C(*pc, nresults + 1);
  618. SETARG_A(*pc, fs->freereg);
  619. luaK_reserveregs(fs, 1);
  620. }
  621. }
  622. /*
  623. ** Convert a VKSTR to a VK
  624. */
  625. static void str2K (FuncState *fs, expdesc *e) {
  626. lua_assert(e->k == VKSTR);
  627. e->u.info = stringK(fs, e->u.strval);
  628. e->k = VK;
  629. }
  630. /*
  631. ** Fix an expression to return one result.
  632. ** If expression is not a multi-ret expression (function call or
  633. ** vararg), it already returns one result, so nothing needs to be done.
  634. ** Function calls become VNONRELOC expressions (as its result comes
  635. ** fixed in the base register of the call), while vararg expressions
  636. ** become VRELOC (as OP_VARARG puts its results where it wants).
  637. ** (Calls are created returning one result, so that does not need
  638. ** to be fixed.)
  639. */
  640. void luaK_setoneret (FuncState *fs, expdesc *e) {
  641. if (e->k == VCALL) { /* expression is an open function call? */
  642. /* already returns 1 value */
  643. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  644. e->k = VNONRELOC; /* result has fixed position */
  645. e->u.info = GETARG_A(getinstruction(fs, e));
  646. }
  647. else if (e->k == VVARARG) {
  648. SETARG_C(getinstruction(fs, e), 2);
  649. e->k = VRELOC; /* can relocate its simple result */
  650. }
  651. }
  652. /*
  653. ** Ensure that expression 'e' is not a variable (nor a <const>).
  654. ** (Expression still may have jump lists.)
  655. */
  656. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  657. switch (e->k) {
  658. case VCONST: {
  659. const2exp(const2val(fs, e), e);
  660. break;
  661. }
  662. case VLOCAL: { /* already in a register */
  663. e->u.info = e->u.var.ridx;
  664. e->k = VNONRELOC; /* becomes a non-relocatable value */
  665. break;
  666. }
  667. case VUPVAL: { /* move value to some (pending) register */
  668. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  669. e->k = VRELOC;
  670. break;
  671. }
  672. case VINDEXUP: {
  673. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  674. e->k = VRELOC;
  675. break;
  676. }
  677. case VINDEXI: {
  678. freereg(fs, e->u.ind.t);
  679. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  680. e->k = VRELOC;
  681. break;
  682. }
  683. case VINDEXSTR: {
  684. freereg(fs, e->u.ind.t);
  685. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  686. e->k = VRELOC;
  687. break;
  688. }
  689. case VINDEXED: {
  690. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  691. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  692. e->k = VRELOC;
  693. break;
  694. }
  695. case VVARARG: case VCALL: {
  696. luaK_setoneret(fs, e);
  697. break;
  698. }
  699. default: break; /* there is one value available (somewhere) */
  700. }
  701. }
  702. /*
  703. ** Ensure expression value is in register 'reg', making 'e' a
  704. ** non-relocatable expression.
  705. ** (Expression still may have jump lists.)
  706. */
  707. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  708. luaK_dischargevars(fs, e);
  709. switch (e->k) {
  710. case VNIL: {
  711. luaK_nil(fs, reg, 1);
  712. break;
  713. }
  714. case VFALSE: {
  715. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  716. break;
  717. }
  718. case VTRUE: {
  719. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  720. break;
  721. }
  722. case VKSTR: {
  723. str2K(fs, e);
  724. } /* FALLTHROUGH */
  725. case VK: {
  726. luaK_codek(fs, reg, e->u.info);
  727. break;
  728. }
  729. case VKFLT: {
  730. luaK_float(fs, reg, e->u.nval);
  731. break;
  732. }
  733. case VKINT: {
  734. luaK_int(fs, reg, e->u.ival);
  735. break;
  736. }
  737. case VRELOC: {
  738. Instruction *pc = &getinstruction(fs, e);
  739. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  740. break;
  741. }
  742. case VNONRELOC: {
  743. if (reg != e->u.info)
  744. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  745. break;
  746. }
  747. default: {
  748. lua_assert(e->k == VJMP);
  749. return; /* nothing to do... */
  750. }
  751. }
  752. e->u.info = reg;
  753. e->k = VNONRELOC;
  754. }
  755. /*
  756. ** Ensure expression value is in a register, making 'e' a
  757. ** non-relocatable expression.
  758. ** (Expression still may have jump lists.)
  759. */
  760. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  761. if (e->k != VNONRELOC) { /* no fixed register yet? */
  762. luaK_reserveregs(fs, 1); /* get a register */
  763. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  764. }
  765. }
  766. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  767. luaK_getlabel(fs); /* those instructions may be jump targets */
  768. return luaK_codeABC(fs, op, A, 0, 0);
  769. }
  770. /*
  771. ** check whether list has any jump that do not produce a value
  772. ** or produce an inverted value
  773. */
  774. static int need_value (FuncState *fs, int list) {
  775. for (; list != NO_JUMP; list = getjump(fs, list)) {
  776. Instruction i = *getjumpcontrol(fs, list);
  777. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  778. }
  779. return 0; /* not found */
  780. }
  781. /*
  782. ** Ensures final expression result (which includes results from its
  783. ** jump lists) is in register 'reg'.
  784. ** If expression has jumps, need to patch these jumps either to
  785. ** its final position or to "load" instructions (for those tests
  786. ** that do not produce values).
  787. */
  788. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  789. discharge2reg(fs, e, reg);
  790. if (e->k == VJMP) /* expression itself is a test? */
  791. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  792. if (hasjumps(e)) {
  793. int final; /* position after whole expression */
  794. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  795. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  796. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  797. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  798. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  799. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  800. /* jump around these booleans if 'e' is not a test */
  801. luaK_patchtohere(fs, fj);
  802. }
  803. final = luaK_getlabel(fs);
  804. patchlistaux(fs, e->f, final, reg, p_f);
  805. patchlistaux(fs, e->t, final, reg, p_t);
  806. }
  807. e->f = e->t = NO_JUMP;
  808. e->u.info = reg;
  809. e->k = VNONRELOC;
  810. }
  811. /*
  812. ** Ensures final expression result is in next available register.
  813. */
  814. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  815. luaK_dischargevars(fs, e);
  816. freeexp(fs, e);
  817. luaK_reserveregs(fs, 1);
  818. exp2reg(fs, e, fs->freereg - 1);
  819. }
  820. /*
  821. ** Ensures final expression result is in some (any) register
  822. ** and return that register.
  823. */
  824. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  825. luaK_dischargevars(fs, e);
  826. if (e->k == VNONRELOC) { /* expression already has a register? */
  827. if (!hasjumps(e)) /* no jumps? */
  828. return e->u.info; /* result is already in a register */
  829. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  830. exp2reg(fs, e, e->u.info); /* put final result in it */
  831. return e->u.info;
  832. }
  833. /* else expression has jumps and cannot change its register
  834. to hold the jump values, because it is a local variable.
  835. Go through to the default case. */
  836. }
  837. luaK_exp2nextreg(fs, e); /* default: use next available register */
  838. return e->u.info;
  839. }
  840. /*
  841. ** Ensures final expression result is either in a register
  842. ** or in an upvalue.
  843. */
  844. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  845. if (e->k != VUPVAL || hasjumps(e))
  846. luaK_exp2anyreg(fs, e);
  847. }
  848. /*
  849. ** Ensures final expression result is either in a register
  850. ** or it is a constant.
  851. */
  852. void luaK_exp2val (FuncState *fs, expdesc *e) {
  853. if (hasjumps(e))
  854. luaK_exp2anyreg(fs, e);
  855. else
  856. luaK_dischargevars(fs, e);
  857. }
  858. /*
  859. ** Try to make 'e' a K expression with an index in the range of R/K
  860. ** indices. Return true iff succeeded.
  861. */
  862. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  863. if (!hasjumps(e)) {
  864. int info;
  865. switch (e->k) { /* move constants to 'k' */
  866. case VTRUE: info = boolT(fs); break;
  867. case VFALSE: info = boolF(fs); break;
  868. case VNIL: info = nilK(fs); break;
  869. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  870. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  871. case VKSTR: info = stringK(fs, e->u.strval); break;
  872. case VK: info = e->u.info; break;
  873. default: return 0; /* not a constant */
  874. }
  875. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  876. e->k = VK; /* make expression a 'K' expression */
  877. e->u.info = info;
  878. return 1;
  879. }
  880. }
  881. /* else, expression doesn't fit; leave it unchanged */
  882. return 0;
  883. }
  884. /*
  885. ** Ensures final expression result is in a valid R/K index
  886. ** (that is, it is either in a register or in 'k' with an index
  887. ** in the range of R/K indices).
  888. ** Returns 1 iff expression is K.
  889. */
  890. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  891. if (luaK_exp2K(fs, e))
  892. return 1;
  893. else { /* not a constant in the right range: put it in a register */
  894. luaK_exp2anyreg(fs, e);
  895. return 0;
  896. }
  897. }
  898. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  899. expdesc *ec) {
  900. int k = luaK_exp2RK(fs, ec);
  901. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  902. }
  903. /*
  904. ** Generate code to store result of expression 'ex' into variable 'var'.
  905. */
  906. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  907. switch (var->k) {
  908. case VLOCAL: {
  909. freeexp(fs, ex);
  910. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  911. return;
  912. }
  913. case VUPVAL: {
  914. int e = luaK_exp2anyreg(fs, ex);
  915. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  916. break;
  917. }
  918. case VINDEXUP: {
  919. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  920. break;
  921. }
  922. case VINDEXI: {
  923. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  924. break;
  925. }
  926. case VINDEXSTR: {
  927. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  928. break;
  929. }
  930. case VINDEXED: {
  931. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  932. break;
  933. }
  934. default: lua_assert(0); /* invalid var kind to store */
  935. }
  936. freeexp(fs, ex);
  937. }
  938. /*
  939. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  940. */
  941. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  942. int ereg;
  943. luaK_exp2anyreg(fs, e);
  944. ereg = e->u.info; /* register where 'e' was placed */
  945. freeexp(fs, e);
  946. e->u.info = fs->freereg; /* base register for op_self */
  947. e->k = VNONRELOC; /* self expression has a fixed register */
  948. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  949. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  950. freeexp(fs, key);
  951. }
  952. /*
  953. ** Negate condition 'e' (where 'e' is a comparison).
  954. */
  955. static void negatecondition (FuncState *fs, expdesc *e) {
  956. Instruction *pc = getjumpcontrol(fs, e->u.info);
  957. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  958. GET_OPCODE(*pc) != OP_TEST);
  959. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  960. }
  961. /*
  962. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  963. ** is true, code will jump if 'e' is true.) Return jump position.
  964. ** Optimize when 'e' is 'not' something, inverting the condition
  965. ** and removing the 'not'.
  966. */
  967. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  968. if (e->k == VRELOC) {
  969. Instruction ie = getinstruction(fs, e);
  970. if (GET_OPCODE(ie) == OP_NOT) {
  971. removelastinstruction(fs); /* remove previous OP_NOT */
  972. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  973. }
  974. /* else go through */
  975. }
  976. discharge2anyreg(fs, e);
  977. freeexp(fs, e);
  978. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  979. }
  980. /*
  981. ** Emit code to go through if 'e' is true, jump otherwise.
  982. */
  983. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  984. int pc; /* pc of new jump */
  985. luaK_dischargevars(fs, e);
  986. switch (e->k) {
  987. case VJMP: { /* condition? */
  988. negatecondition(fs, e); /* jump when it is false */
  989. pc = e->u.info; /* save jump position */
  990. break;
  991. }
  992. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  993. pc = NO_JUMP; /* always true; do nothing */
  994. break;
  995. }
  996. default: {
  997. pc = jumponcond(fs, e, 0); /* jump when false */
  998. break;
  999. }
  1000. }
  1001. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1002. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1003. e->t = NO_JUMP;
  1004. }
  1005. /*
  1006. ** Emit code to go through if 'e' is false, jump otherwise.
  1007. */
  1008. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1009. int pc; /* pc of new jump */
  1010. luaK_dischargevars(fs, e);
  1011. switch (e->k) {
  1012. case VJMP: {
  1013. pc = e->u.info; /* already jump if true */
  1014. break;
  1015. }
  1016. case VNIL: case VFALSE: {
  1017. pc = NO_JUMP; /* always false; do nothing */
  1018. break;
  1019. }
  1020. default: {
  1021. pc = jumponcond(fs, e, 1); /* jump if true */
  1022. break;
  1023. }
  1024. }
  1025. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1026. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1027. e->f = NO_JUMP;
  1028. }
  1029. /*
  1030. ** Code 'not e', doing constant folding.
  1031. */
  1032. static void codenot (FuncState *fs, expdesc *e) {
  1033. switch (e->k) {
  1034. case VNIL: case VFALSE: {
  1035. e->k = VTRUE; /* true == not nil == not false */
  1036. break;
  1037. }
  1038. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1039. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1040. break;
  1041. }
  1042. case VJMP: {
  1043. negatecondition(fs, e);
  1044. break;
  1045. }
  1046. case VRELOC:
  1047. case VNONRELOC: {
  1048. discharge2anyreg(fs, e);
  1049. freeexp(fs, e);
  1050. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1051. e->k = VRELOC;
  1052. break;
  1053. }
  1054. default: lua_assert(0); /* cannot happen */
  1055. }
  1056. /* interchange true and false lists */
  1057. { int temp = e->f; e->f = e->t; e->t = temp; }
  1058. removevalues(fs, e->f); /* values are useless when negated */
  1059. removevalues(fs, e->t);
  1060. }
  1061. /*
  1062. ** Check whether expression 'e' is a small literal string
  1063. */
  1064. static int isKstr (FuncState *fs, expdesc *e) {
  1065. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1066. ttisshrstring(&fs->f->k[e->u.info]));
  1067. }
  1068. /*
  1069. ** Check whether expression 'e' is a literal integer.
  1070. */
  1071. int luaK_isKint (expdesc *e) {
  1072. return (e->k == VKINT && !hasjumps(e));
  1073. }
  1074. /*
  1075. ** Check whether expression 'e' is a literal integer in
  1076. ** proper range to fit in register C
  1077. */
  1078. static int isCint (expdesc *e) {
  1079. return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1080. }
  1081. /*
  1082. ** Check whether expression 'e' is a literal integer in
  1083. ** proper range to fit in register sC
  1084. */
  1085. static int isSCint (expdesc *e) {
  1086. return luaK_isKint(e) && fitsC(e->u.ival);
  1087. }
  1088. /*
  1089. ** Check whether expression 'e' is a literal integer or float in
  1090. ** proper range to fit in a register (sB or sC).
  1091. */
  1092. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1093. lua_Integer i;
  1094. if (e->k == VKINT)
  1095. i = e->u.ival;
  1096. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1097. *isfloat = 1;
  1098. else
  1099. return 0; /* not a number */
  1100. if (!hasjumps(e) && fitsC(i)) {
  1101. *pi = int2sC(cast_int(i));
  1102. return 1;
  1103. }
  1104. else
  1105. return 0;
  1106. }
  1107. /*
  1108. ** Create expression 't[k]'. 't' must have its final result already in a
  1109. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1110. ** Keys can be literal strings in the constant table or arbitrary
  1111. ** values in registers.
  1112. */
  1113. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1114. if (k->k == VKSTR)
  1115. str2K(fs, k);
  1116. lua_assert(!hasjumps(t) &&
  1117. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1118. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1119. luaK_exp2anyreg(fs, t); /* put it in a register */
  1120. if (t->k == VUPVAL) {
  1121. t->u.ind.t = t->u.info; /* upvalue index */
  1122. t->u.ind.idx = k->u.info; /* literal string */
  1123. t->k = VINDEXUP;
  1124. }
  1125. else {
  1126. /* register index of the table */
  1127. t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
  1128. if (isKstr(fs, k)) {
  1129. t->u.ind.idx = k->u.info; /* literal string */
  1130. t->k = VINDEXSTR;
  1131. }
  1132. else if (isCint(k)) {
  1133. t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
  1134. t->k = VINDEXI;
  1135. }
  1136. else {
  1137. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  1138. t->k = VINDEXED;
  1139. }
  1140. }
  1141. }
  1142. /*
  1143. ** Return false if folding can raise an error.
  1144. ** Bitwise operations need operands convertible to integers; division
  1145. ** operations cannot have 0 as divisor.
  1146. */
  1147. static int validop (int op, TValue *v1, TValue *v2) {
  1148. switch (op) {
  1149. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1150. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1151. lua_Integer i;
  1152. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1153. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1154. }
  1155. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1156. return (nvalue(v2) != 0);
  1157. default: return 1; /* everything else is valid */
  1158. }
  1159. }
  1160. /*
  1161. ** Try to "constant-fold" an operation; return 1 iff successful.
  1162. ** (In this case, 'e1' has the final result.)
  1163. */
  1164. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1165. const expdesc *e2) {
  1166. TValue v1, v2, res;
  1167. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1168. return 0; /* non-numeric operands or not safe to fold */
  1169. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1170. if (ttisinteger(&res)) {
  1171. e1->k = VKINT;
  1172. e1->u.ival = ivalue(&res);
  1173. }
  1174. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1175. lua_Number n = fltvalue(&res);
  1176. if (luai_numisnan(n) || n == 0)
  1177. return 0;
  1178. e1->k = VKFLT;
  1179. e1->u.nval = n;
  1180. }
  1181. return 1;
  1182. }
  1183. /*
  1184. ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
  1185. */
  1186. l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
  1187. lua_assert(baser <= opr &&
  1188. ((baser == OPR_ADD && opr <= OPR_SHR) ||
  1189. (baser == OPR_LT && opr <= OPR_LE)));
  1190. return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
  1191. }
  1192. /*
  1193. ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
  1194. */
  1195. l_sinline OpCode unopr2op (UnOpr opr) {
  1196. return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
  1197. cast_int(OP_UNM));
  1198. }
  1199. /*
  1200. ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
  1201. */
  1202. l_sinline TMS binopr2TM (BinOpr opr) {
  1203. lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
  1204. return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
  1205. }
  1206. /*
  1207. ** Emit code for unary expressions that "produce values"
  1208. ** (everything but 'not').
  1209. ** Expression to produce final result will be encoded in 'e'.
  1210. */
  1211. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1212. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1213. freeexp(fs, e);
  1214. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1215. e->k = VRELOC; /* all those operations are relocatable */
  1216. luaK_fixline(fs, line);
  1217. }
  1218. /*
  1219. ** Emit code for binary expressions that "produce values"
  1220. ** (everything but logical operators 'and'/'or' and comparison
  1221. ** operators).
  1222. ** Expression to produce final result will be encoded in 'e1'.
  1223. */
  1224. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1225. OpCode op, int v2, int flip, int line,
  1226. OpCode mmop, TMS event) {
  1227. int v1 = luaK_exp2anyreg(fs, e1);
  1228. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1229. freeexps(fs, e1, e2);
  1230. e1->u.info = pc;
  1231. e1->k = VRELOC; /* all those operations are relocatable */
  1232. luaK_fixline(fs, line);
  1233. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1234. luaK_fixline(fs, line);
  1235. }
  1236. /*
  1237. ** Emit code for binary expressions that "produce values" over
  1238. ** two registers.
  1239. */
  1240. static void codebinexpval (FuncState *fs, BinOpr opr,
  1241. expdesc *e1, expdesc *e2, int line) {
  1242. OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
  1243. int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
  1244. /* 'e1' must be already in a register or it is a constant */
  1245. lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
  1246. e1->k == VNONRELOC || e1->k == VRELOC);
  1247. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1248. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
  1249. }
  1250. /*
  1251. ** Code binary operators with immediate operands.
  1252. */
  1253. static void codebini (FuncState *fs, OpCode op,
  1254. expdesc *e1, expdesc *e2, int flip, int line,
  1255. TMS event) {
  1256. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1257. lua_assert(e2->k == VKINT);
  1258. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1259. }
  1260. /*
  1261. ** Code binary operators with K operand.
  1262. */
  1263. static void codebinK (FuncState *fs, BinOpr opr,
  1264. expdesc *e1, expdesc *e2, int flip, int line) {
  1265. TMS event = binopr2TM(opr);
  1266. int v2 = e2->u.info; /* K index */
  1267. OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
  1268. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1269. }
  1270. /* Try to code a binary operator negating its second operand.
  1271. ** For the metamethod, 2nd operand must keep its original value.
  1272. */
  1273. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1274. OpCode op, int line, TMS event) {
  1275. if (!luaK_isKint(e2))
  1276. return 0; /* not an integer constant */
  1277. else {
  1278. lua_Integer i2 = e2->u.ival;
  1279. if (!(fitsC(i2) && fitsC(-i2)))
  1280. return 0; /* not in the proper range */
  1281. else { /* operating a small integer constant */
  1282. int v2 = cast_int(i2);
  1283. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1284. /* correct metamethod argument */
  1285. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1286. return 1; /* successfully coded */
  1287. }
  1288. }
  1289. }
  1290. static void swapexps (expdesc *e1, expdesc *e2) {
  1291. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1292. }
  1293. /*
  1294. ** Code binary operators with no constant operand.
  1295. */
  1296. static void codebinNoK (FuncState *fs, BinOpr opr,
  1297. expdesc *e1, expdesc *e2, int flip, int line) {
  1298. if (flip)
  1299. swapexps(e1, e2); /* back to original order */
  1300. codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
  1301. }
  1302. /*
  1303. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1304. ** constant in the proper range, use variant opcodes with K operands.
  1305. */
  1306. static void codearith (FuncState *fs, BinOpr opr,
  1307. expdesc *e1, expdesc *e2, int flip, int line) {
  1308. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
  1309. codebinK(fs, opr, e1, e2, flip, line);
  1310. else /* 'e2' is neither an immediate nor a K operand */
  1311. codebinNoK(fs, opr, e1, e2, flip, line);
  1312. }
  1313. /*
  1314. ** Code commutative operators ('+', '*'). If first operand is a
  1315. ** numeric constant, change order of operands to try to use an
  1316. ** immediate or K operator.
  1317. */
  1318. static void codecommutative (FuncState *fs, BinOpr op,
  1319. expdesc *e1, expdesc *e2, int line) {
  1320. int flip = 0;
  1321. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1322. swapexps(e1, e2); /* change order */
  1323. flip = 1;
  1324. }
  1325. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1326. codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
  1327. else
  1328. codearith(fs, op, e1, e2, flip, line);
  1329. }
  1330. /*
  1331. ** Code bitwise operations; they are all commutative, so the function
  1332. ** tries to put an integer constant as the 2nd operand (a K operand).
  1333. */
  1334. static void codebitwise (FuncState *fs, BinOpr opr,
  1335. expdesc *e1, expdesc *e2, int line) {
  1336. int flip = 0;
  1337. if (e1->k == VKINT) {
  1338. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1339. flip = 1;
  1340. }
  1341. if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
  1342. codebinK(fs, opr, e1, e2, flip, line);
  1343. else /* no constants */
  1344. codebinNoK(fs, opr, e1, e2, flip, line);
  1345. }
  1346. /*
  1347. ** Emit code for order comparisons. When using an immediate operand,
  1348. ** 'isfloat' tells whether the original value was a float.
  1349. */
  1350. static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1351. int r1, r2;
  1352. int im;
  1353. int isfloat = 0;
  1354. OpCode op;
  1355. if (isSCnumber(e2, &im, &isfloat)) {
  1356. /* use immediate operand */
  1357. r1 = luaK_exp2anyreg(fs, e1);
  1358. r2 = im;
  1359. op = binopr2op(opr, OPR_LT, OP_LTI);
  1360. }
  1361. else if (isSCnumber(e1, &im, &isfloat)) {
  1362. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1363. r1 = luaK_exp2anyreg(fs, e2);
  1364. r2 = im;
  1365. op = binopr2op(opr, OPR_LT, OP_GTI);
  1366. }
  1367. else { /* regular case, compare two registers */
  1368. r1 = luaK_exp2anyreg(fs, e1);
  1369. r2 = luaK_exp2anyreg(fs, e2);
  1370. op = binopr2op(opr, OPR_LT, OP_LT);
  1371. }
  1372. freeexps(fs, e1, e2);
  1373. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1374. e1->k = VJMP;
  1375. }
  1376. /*
  1377. ** Emit code for equality comparisons ('==', '~=').
  1378. ** 'e1' was already put as RK by 'luaK_infix'.
  1379. */
  1380. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1381. int r1, r2;
  1382. int im;
  1383. int isfloat = 0; /* not needed here, but kept for symmetry */
  1384. OpCode op;
  1385. if (e1->k != VNONRELOC) {
  1386. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1387. swapexps(e1, e2);
  1388. }
  1389. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1390. if (isSCnumber(e2, &im, &isfloat)) {
  1391. op = OP_EQI;
  1392. r2 = im; /* immediate operand */
  1393. }
  1394. else if (luaK_exp2RK(fs, e2)) { /* 2nd expression is constant? */
  1395. op = OP_EQK;
  1396. r2 = e2->u.info; /* constant index */
  1397. }
  1398. else {
  1399. op = OP_EQ; /* will compare two registers */
  1400. r2 = luaK_exp2anyreg(fs, e2);
  1401. }
  1402. freeexps(fs, e1, e2);
  1403. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1404. e1->k = VJMP;
  1405. }
  1406. /*
  1407. ** Apply prefix operation 'op' to expression 'e'.
  1408. */
  1409. void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
  1410. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1411. luaK_dischargevars(fs, e);
  1412. switch (opr) {
  1413. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1414. if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
  1415. break;
  1416. /* else */ /* FALLTHROUGH */
  1417. case OPR_LEN:
  1418. codeunexpval(fs, unopr2op(opr), e, line);
  1419. break;
  1420. case OPR_NOT: codenot(fs, e); break;
  1421. default: lua_assert(0);
  1422. }
  1423. }
  1424. /*
  1425. ** Process 1st operand 'v' of binary operation 'op' before reading
  1426. ** 2nd operand.
  1427. */
  1428. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1429. luaK_dischargevars(fs, v);
  1430. switch (op) {
  1431. case OPR_AND: {
  1432. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1433. break;
  1434. }
  1435. case OPR_OR: {
  1436. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1437. break;
  1438. }
  1439. case OPR_CONCAT: {
  1440. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1441. break;
  1442. }
  1443. case OPR_ADD: case OPR_SUB:
  1444. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1445. case OPR_MOD: case OPR_POW:
  1446. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1447. case OPR_SHL: case OPR_SHR: {
  1448. if (!tonumeral(v, NULL))
  1449. luaK_exp2anyreg(fs, v);
  1450. /* else keep numeral, which may be folded or used as an immediate
  1451. operand */
  1452. break;
  1453. }
  1454. case OPR_EQ: case OPR_NE: {
  1455. if (!tonumeral(v, NULL))
  1456. luaK_exp2RK(fs, v);
  1457. /* else keep numeral, which may be an immediate operand */
  1458. break;
  1459. }
  1460. case OPR_LT: case OPR_LE:
  1461. case OPR_GT: case OPR_GE: {
  1462. int dummy, dummy2;
  1463. if (!isSCnumber(v, &dummy, &dummy2))
  1464. luaK_exp2anyreg(fs, v);
  1465. /* else keep numeral, which may be an immediate operand */
  1466. break;
  1467. }
  1468. default: lua_assert(0);
  1469. }
  1470. }
  1471. /*
  1472. ** Create code for '(e1 .. e2)'.
  1473. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1474. ** because concatenation is right associative), merge both CONCATs.
  1475. */
  1476. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1477. Instruction *ie2 = previousinstruction(fs);
  1478. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1479. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1480. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1481. freeexp(fs, e2);
  1482. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1483. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1484. }
  1485. else { /* 'e2' is not a concatenation */
  1486. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1487. freeexp(fs, e2);
  1488. luaK_fixline(fs, line);
  1489. }
  1490. }
  1491. /*
  1492. ** Finalize code for binary operation, after reading 2nd operand.
  1493. */
  1494. void luaK_posfix (FuncState *fs, BinOpr opr,
  1495. expdesc *e1, expdesc *e2, int line) {
  1496. luaK_dischargevars(fs, e2);
  1497. if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
  1498. return; /* done by folding */
  1499. switch (opr) {
  1500. case OPR_AND: {
  1501. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1502. luaK_concat(fs, &e2->f, e1->f);
  1503. *e1 = *e2;
  1504. break;
  1505. }
  1506. case OPR_OR: {
  1507. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1508. luaK_concat(fs, &e2->t, e1->t);
  1509. *e1 = *e2;
  1510. break;
  1511. }
  1512. case OPR_CONCAT: { /* e1 .. e2 */
  1513. luaK_exp2nextreg(fs, e2);
  1514. codeconcat(fs, e1, e2, line);
  1515. break;
  1516. }
  1517. case OPR_ADD: case OPR_MUL: {
  1518. codecommutative(fs, opr, e1, e2, line);
  1519. break;
  1520. }
  1521. case OPR_SUB: {
  1522. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1523. break; /* coded as (r1 + -I) */
  1524. /* ELSE */
  1525. } /* FALLTHROUGH */
  1526. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1527. codearith(fs, opr, e1, e2, 0, line);
  1528. break;
  1529. }
  1530. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1531. codebitwise(fs, opr, e1, e2, line);
  1532. break;
  1533. }
  1534. case OPR_SHL: {
  1535. if (isSCint(e1)) {
  1536. swapexps(e1, e2);
  1537. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1538. }
  1539. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1540. /* coded as (r1 >> -I) */;
  1541. }
  1542. else /* regular case (two registers) */
  1543. codebinexpval(fs, opr, e1, e2, line);
  1544. break;
  1545. }
  1546. case OPR_SHR: {
  1547. if (isSCint(e2))
  1548. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1549. else /* regular case (two registers) */
  1550. codebinexpval(fs, opr, e1, e2, line);
  1551. break;
  1552. }
  1553. case OPR_EQ: case OPR_NE: {
  1554. codeeq(fs, opr, e1, e2);
  1555. break;
  1556. }
  1557. case OPR_GT: case OPR_GE: {
  1558. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1559. swapexps(e1, e2);
  1560. opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
  1561. } /* FALLTHROUGH */
  1562. case OPR_LT: case OPR_LE: {
  1563. codeorder(fs, opr, e1, e2);
  1564. break;
  1565. }
  1566. default: lua_assert(0);
  1567. }
  1568. }
  1569. /*
  1570. ** Change line information associated with current position, by removing
  1571. ** previous info and adding it again with new line.
  1572. */
  1573. void luaK_fixline (FuncState *fs, int line) {
  1574. removelastlineinfo(fs);
  1575. savelineinfo(fs, fs->f, line);
  1576. }
  1577. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1578. Instruction *inst = &fs->f->code[pc];
  1579. int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
  1580. int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
  1581. int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
  1582. int k = (extra > 0); /* true iff needs extra argument */
  1583. *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  1584. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1585. }
  1586. /*
  1587. ** Emit a SETLIST instruction.
  1588. ** 'base' is register that keeps table;
  1589. ** 'nelems' is #table plus those to be stored now;
  1590. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1591. ** table (or LUA_MULTRET to add up to stack top).
  1592. */
  1593. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1594. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1595. if (tostore == LUA_MULTRET)
  1596. tostore = 0;
  1597. if (nelems <= MAXARG_C)
  1598. luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  1599. else {
  1600. int extra = nelems / (MAXARG_C + 1);
  1601. nelems %= (MAXARG_C + 1);
  1602. luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1603. codeextraarg(fs, extra);
  1604. }
  1605. fs->freereg = base + 1; /* free registers with list values */
  1606. }
  1607. /*
  1608. ** return the final target of a jump (skipping jumps to jumps)
  1609. */
  1610. static int finaltarget (Instruction *code, int i) {
  1611. int count;
  1612. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1613. Instruction pc = code[i];
  1614. if (GET_OPCODE(pc) != OP_JMP)
  1615. break;
  1616. else
  1617. i += GETARG_sJ(pc) + 1;
  1618. }
  1619. return i;
  1620. }
  1621. /*
  1622. ** Do a final pass over the code of a function, doing small peephole
  1623. ** optimizations and adjustments.
  1624. */
  1625. void luaK_finish (FuncState *fs) {
  1626. int i;
  1627. Proto *p = fs->f;
  1628. for (i = 0; i < fs->pc; i++) {
  1629. Instruction *pc = &p->code[i];
  1630. lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
  1631. switch (GET_OPCODE(*pc)) {
  1632. case OP_RETURN0: case OP_RETURN1: {
  1633. if (!(fs->needclose || p->is_vararg))
  1634. break; /* no extra work */
  1635. /* else use OP_RETURN to do the extra work */
  1636. SET_OPCODE(*pc, OP_RETURN);
  1637. } /* FALLTHROUGH */
  1638. case OP_RETURN: case OP_TAILCALL: {
  1639. if (fs->needclose)
  1640. SETARG_k(*pc, 1); /* signal that it needs to close */
  1641. if (p->is_vararg)
  1642. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1643. break;
  1644. }
  1645. case OP_JMP: {
  1646. int target = finaltarget(p->code, i);
  1647. fixjump(fs, i, target);
  1648. break;
  1649. }
  1650. default: break;
  1651. }
  1652. }
  1653. }